Potensi Pemanfaatan Air Limbah Sebagai Sumber Air Baku Alternatif di Kota Padang

Potential for Utilizing Waste Water as an Alternative Source of Raw Water in Padang City

Munawir Muluk. Z¹

¹Program Studi Magister Teknik Sipil, Fakultas Teknik, Universitas Andalas ¹munawirmuluk020598@gmail.com

Abstract

The activities of Padang City residents in various sectors continue to increase along with the increase in population. As a result, the need for raw water availability continues to increase. Water waste production in various sectors has also increased as a result of these conditions. In 2022, the population of Padang City will be recorded at 919,145 people with raw water requirements of 1,664 l/sec. Meanwhile, PDAM Padang City's raw water production capacity that year was only 1,595 l/s. These conditions indicate that Padang City in 2022 will experience a raw water deficit of 69 l/s. Of course, this figure will continue to increase along with the increase in population and activities. This research aims to find out the level of raw water demand for Padang City until 2045, by referring to the central government's projection that Indonesia will enter the golden age of "Golden Indonesia" in that year, as well as calculating the large potential for practical water to be used as a water source. alternative raw material in Padang City. Using descriptive statistical methods, the projected total raw water demand for the domestic and non-domestic sectors of Padang City in 2045 is 1,901 l/s, an increase of 14.27% from the need in 2022. Projection of waste water production levels in 2045 That is 1,521 l/s. Assuming the potential level of waste recycling is 60%, this will produce additional raw water for the city of Padang of 913 l/sec. With this amount, waste recycling can contribute as much as 48% to the supply of raw water needs for Padang City.

Keywords: Water Requirements, Raw Water, Recycling, Potential, Waste Water

Abstrak

Aktifitas penduduk Kota Padang dalam berbagai sektor terus mengalami peningkatan seiring dengan pertambahan jumlah penduduk. Akibatnya, kebutuhan akan ketersediaan air baku menjadi terus bertambah. Produksi air limbah dalam berbagai sektor juga mengalami peningkatan sebagai dampak dari kondisi tersebut. Pada tahun 2022 Jumlah penduduk kota padang tercatat sebanyak 919.145 Jiwa dengan kebutuhan air baku sebesar 1.664 l/dt. Sementara itu, kapasitas produksi air baku PDAM Kota Padang pada tahun tersebut hanya sebesar 1.595 l/dt. Kondisi demikian menandakan bahwa Kota Padang pada tahun 2022 mengalami defisit air baku sebesar 69 l/dt. Tentunya, angka tersebut akan terus bertambah seiring dengan pertambahan jumlah penduduk dan aktifitasnya. Penelitian ini bertujuan untuk mengetahui seberapa besar tingkat kebutuhan air baku Kota Padang hingga tahun 2045, dengan mengacu kepada proyeksi pemerintah pusat bahwa Indonesia akan masuk pada masa ke-emasan "Indonesia Emas" pada tahun tersebut, serta menghitung besarnya potensi air limbah untuk dijadikan sebagai sumber air baku alternatif di Kota Padang. Dengan menggunakan metode statistik desktiptif, hasil proyeksi jumlah kebutuhan air baku sektor domestik dan non-domestik Kota Padang pada tahun 2045 ialah sebesar 1.901 1/dt, meningkat sebesar 14,27% dari kebutuhan pada tahun 2022. Proyeksi tingkat produksi air limbah pada tahun 2045 ialah sebesar 1.521 l/dt. Dengan asumsi tingkat potensi daur ulang limbah sebesar 60%, maka akan menghasilkan tambahan air baku bagi kota padang sebesar 913 l/dt. Dengan jumlah tersebut, daur ulang limbah dapat memberikan kontribusi sebanyak 48% bagi pemenuhan kebutuhan air baku Kota

Kata kunci: Kebutuhan Air, Air Baku, Daur Ulang, Potensi, Air Limbah

ISSN: 2962-3545

Prosiding SAINTEK: Sains dan Teknologi Vol.3 No.1 Tahun 2024 *Call for papers* dan Seminar Nasional Sains dan Teknologi Ke-3 2024 Fakultas Teknik, Universitas Pelita Bangsa, Januari 2024

Pendahuluan

Air adalah salah satu kebutuhan primer dalam kelangsungan hidup dan kehidupan manusia serta mahluk hidup lainnya di atas muka bumi[1]. Tidak ada air maka siklus kehidupan sudah dapat dipastikan akan sangat terganggu[2]. Kebutuhan terhadap ketersediaan air baku akan terus mengalami peningkatan seiring dengan pertambahan jumlah penduduk[3], kondisi tersebut akan berimbas pada peningkatan aktifitas dari penduduk itu sendiri dalam berbagai sektor baik domestik maupun non domestik; mulai dari aktifitas industri manufaktur, pariwisata, pendidikan, perkantoran, kesehatan, peribadatan dan sebagainya[4].

Tingginya angka pertambahan jumlah penduduk dan aktifitasnya, terkhusus pada sebagain besar daerah perkotaan, telah memicu kekhawatiran bersama akan kemampuan untuk menyediakan air baku dalam kualitas dan kuantitas yang memadai. Disisi yang lain, kondisi iklim yang sulit untuk diprediksi juga mengambil peranan tersendiri dalam permasalahan ketersediaan air baku, karena berdampak pada perubahan siklus air yang menyebabkan bencana kekeringan di beberap daerah[5]. Berapa pertanyaan pun mulai mencuat, tentang seberapa lama suber air baku yang tersedia mampu untuk bertahan, jenis sumber air baku seperti apa yang bisa diandalkan serta lokasi sumber air mana yang bisa dimanfaatkan[6].

Untuk merespon kondisi tersebut, dewasa ini inovasi-inovasi baru dalam bidang suplai sumber air baku telah menjadi perhatian penting di seluruh dunia. Salah satu inovasi yang banyak mendapatkan perhatian ialah penggunaan daur ulang air limbah, khususnya limbah perkotaan (*Municipal Waste*) sebagai salah satu alternatif suplai air baku. penggunaan kembali air limbah pada dasarnya akan memainkan peran ganda, disamping meningkatkan ketersediaan suplai air baku, di sisi yang lain juga dapat mengurangi pembuangan limbah yang berdampak pada aspek lingkungan [6].

Masalah ketersediaan sumber air baku juga terjadi di Kota Padang[7], dimana sumber air baku yang berasal dari sungai selalu mengalami penurunan debit terutama pada musim kemarau[8]. Sementara kebutuhan air baku terus mengalami peningkatan siring dengan peningkatan jumlah penduduk dan aktifitasnya. Pada tahun 2022 Jumlah penduduk Kota Padang tercatat sebanyak 919.145 Jiwa[9], dengan kebutuhan air baku sebesar 1.664 liter/detik[10]. Kondisi itu menandakan bahwa Kota Padang pada tahun 2022 saja telah mengalami defisit air baku sebesar 69 liter/dettk. Tentunya, angka tersebut akan terus bertambah seiring dengan pertambahan jumlah penduduk dan aktifitasnya.

Melihat dari kondisi yang ada saat ini, teknologi penggunaan kembali air limbah dirasa tepat dan mampu memberikan kontribusi yang signifikan bagi pemenuhan kebutuhan air baku Kota Padang[11]. Pada dasarnya, upaya penggunaan kembali air telah diamanatkan oleh Undang-undang Republik Indonesia No.7 Tahun 2004 tentang "Sumber Daya Air"[12], maka sudah sepantasnya amanat tersebut diimplementasikan oleh semua pihak. Dalam melaksanakan amanat tersebut, perlu adanya sinergitas antara setiap pemangku kepentingan untuk dapat melakukan kajian strategis, guna menemukan solusi atas permasalahan kekurangan air di Kota Padang. Pemerintah harus menjadi motor penggerak dari upaya tersebut, sesuai dengan apa yang diamanatkan dalam Peraturan Daerah Kota Padang No. 3 Tahun 2006[13].

Penelitian ini bertujuan untuk mengetahui seberapa besar tingkat kebutuhan air baku Kota Padang hingga tahun 2045, dengan mengacu kepada proyeksi pemerintah pusat bahwa Indonesia akan masuk pada masa ke-emasan "Indonesia Emas" pada tahun tersebut, serta menghitung besarnya potensi air limbah untuk dijadikan sebagai sumber air baku alternatif di Kota Padang.

Proyeksi jumlah penduduk dijadikan sebagai landasan dalam memperkirakan kebutuhan air baku, serta membuat perhitungan tentang seberapa besar potensi air limbah yang tersedia dapat dimanfaatkan kembali menjadi sumber air baku[14]. Perhitungan proyeksi jumlah penduduk dapat dilakukan dengan banyak metode, beberapa diantaranya yaitu; Metode Aritmatik[15], Geometrik[3] dan Ekspo-nensial, [14]. Metode

perhitungan dengan standard deviasi/koefisien korelasi yang mendekati nilai +1 (satu) adalah metode yang terpilih untuk digunakan[15].

Rumus proyeksi jumlah penduduk dengan Metode Aritmatik:

$$P_n = P_0 + (r \cdot n)$$
(1)

Rumus proyeksi jumlah penduduk dengan Metode Geometrik

$$P_n = P_o \cdot (1+r)^n$$
 (2)

Rumus proyeksi jumlah penduduk dengan Metode Eksponensial

$$P_n = P_0 \cdot e^{r \cdot n} \tag{4}$$

Rumus mencari Standar Deviasi

$$s = \sqrt{\frac{\sum (X_i - X)^2}{na}}, (untuk \, n > 20)$$
(5)

Keterangan:

 P_n = Jumlah penduduk pada tahun proyeksi (jiwa)

 P_0 = Jumlah penduduk pada awal acuan/awal tahun dasar (jiwa)

r = Pertumbuhan rata-rata penduduk (%)

n = Selisih tahun ke-n dengan tahun acuan (tahun)

e = Bilangan logaritma natural (2,7182)

s = Standar deviasi

 X_i = Variabel independent X (Jumlah Penduduk)

Xmean = Rata-rata X na = Jumlah data

Kebutuhan air pada suatu wilayah didasarkan kepada 2 (Dua) kompenen, yaitu kebutuhan air domestik dan non-domestik. Kebutuhan air domestik meliputi kebutuhan air untuk aktifitas harian dengan tingakt pelayanan sebesar 70% (tujuh puluh persen) seperti aktifitas; mandi, masak, mencuci dan lain-lain, serta kebutuhan air untuk *hydran* umum dengan tingkat pelayanan sebesar 20% (dua puluh persen), dengan masing-masing tingkat kebutuhan air menyesuiakan kepada standard kebutuhan air domestik (Tabel 1). Sementara, kebutuhan air non-domestik adalah kebutuhan air pada fasilitas kesehatan, peribadatan, komersial, kantor, industri dan lain-lain, dengan tingkat kebutuhan air pada masing-masing sektor menyesuiakan dengan standard kebutuhan air non-domestik (Tabel 2). Kebutuhan domestik skala perkotaan dibagi kedalam beberapa kategori, yaitu;

Tabel 1. Kriteria Standard Kebutuhan Air Domestik Kota[4]

NO	KATEGORI	JUMLAH PENDUDUK (JIWA)	KEBUTUHAN AIR BERSIH (L/O/H)	KONSUMSI UNIT HIDRAN (l/o/h)
1	Semi Urban	3000-20000	60-90	20-40
2	Kota Kecil	20000-100000	90-110	20-40
3	Kota Sedang	100000-500000	100-125	20-40
4	Kota Besar	500000-1000000	120-150	20-40
5	Metropolitan	>1000000	150-200	20-40

Sementara standar untuk penyediaan kebutuhan air non-domestik dibagi kedalam beberapa komponen konsumen non-domestik, yaitu;

NILAI NO SEKTOR SATUAN 10 Liter/Murid/Hari 1 Sekolah 2 Rumah Sakit 200 Liter/Bed/Hari 3 Puskesmas 2000 Liter/Unit/Hari 4 3000 Liter/Unit/Hari Masjid 5 Kantor 10 Liter/Pegawai/Hari Liter/Hektar/Hari 6 Pasar 12000 7 Hotel 150 Liter/Bed/Hari 8 100 Liter/Tpt. Duduk/Hari Rumah Makan 9 Kompleks Militer 60 Liter/Orang/Hari 10 Kawasan Industri 0,2-0,8 Liter/Detik/Hektar Kawasan Pariwisata 0,1-0,3 Liter/Detik/Hektar 11

Tabel 2. Kriteria Standar Air Non-Domestik Kota[16]

Jumlah total kebutuhan air bersih skala kota ialah jumlah dari kebutuhan air domestik yang perhitungannya mempertimbangkan tingkat pelayanan dan kehilangan air, kemudian ditambahkan dengan kebutuhan air non-domestik. Sebanyak 80% dari jumlah total kebutuhan air akan menjadi air limbah buangan, dan sebanyak 60% dari air limbah buangan yang dihasilkan tersebut perpotensi untuk dapan digunakan kembali sebagai potensi tambahan bagi sumber air baku alternatif[4].

Rumus mencari kebutuhan Domestik

$$K_d = \frac{JP \cdot TP \cdot SKd}{86.400}.$$
 (6)

Rumus mencari kebutuhan Domestik

$$K_{nd} = \frac{JP \cdot SKnd}{86.400}.$$
(7)

Rumus mencari Total Kebutuhan Air

$$T_{ka} = K_d + K_{nd}$$
 (8)

Rumus mencari Potensi Produksi Air Limbah Buangan

$$A_l = 80\% + T_{ka}$$
.....(9)

Rumus mencari Potensi Daur Ulang Air Limbah Buangan

$$A_{du} = 60\% + A_l$$
....(10)

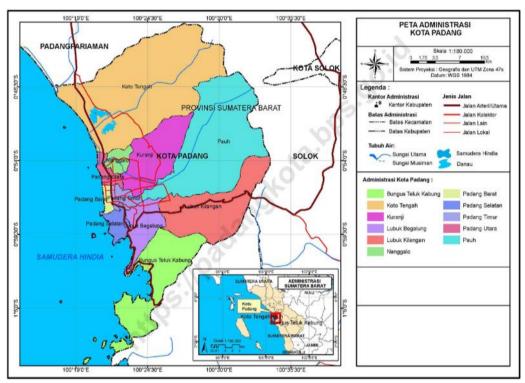
Keterangan:

 K_d = Kebutuhan air domestik (liter/detik)

 K_{nd} = Kebutuhan air non-domestik (liter/detik)

 T_{ka} = Total kebutuhan air (liter/detik)

 A_I = Potensi produksi air limbah (liter/detik)


 A_{du} = Potensi daur ulang air limbah (liter/detik)

JP = Jumlah penduduk (jiwa) TP = Tingkat pelayanan (%)

 SK_d = Standar kebutuhan air domestic (Tabel 1) SK_{nd} = Standar kebutuhan air non-domestic (Tabel 2)

Metode Penelitian

Penelitian ini dilakukan untuk wilayah administratif Kota Padang - Provinsi Sumatera Barat, yang secara astronimi terletak antara 0°44" dan 01°08" LS serta antara 100°05" dan 100°34" BT.

Gambar 1. Peta Administratif Kota Padang[10]

Penelitian dilakukan pada periode bulan Agustus s/d Oktober 2023. Penelitian ini dilakukan secara *Desk Study*. Jenis data yang dikumpulkan pada umumnya ialah data-data sekunder berupa data literatur yang relefan, berupa data yang dikeluarkan oleh intansi terkait dan berkompeten. Pendekatan secara kuantitatif dilakukan dalam analisa data, seperti data Badan Pusat Statistik (BPS) Kota Padang dan Sumatera Barat terbitan tahun 2023 yang menjadi data utama/acuan dalam melakukan perhitungan proyeksi jumlah penduduk dan kebutuhan air domestik maupun non-domestik.

Langkah-langkah dalam penelitian ini dimulai dengan melakukan pengumpulan literatur/manuskrip yang relefan, yaitu penelitian-penelitian terdahulu yang sejenis, untuk selanjutnya dilakukan studi terhadap literatur tersebut guna mengetahui sejauh mana penelitian tentang kajian ini telah dilakukan. Selanjutnya mengumpulkan data-data sekunder terkait dengan data jumlah penduduk, jumlah fasilitas kesehatan, pendidikan, kantor, komersil, indsutri dan sebaginya yang diperoleh dari data BPS Kota Padang dan BPS Sumatera Barat. Setelah semua data terkumpul, dilakukan analisa terhadap data tersebut untuk memperoleh informasi-informasi yang dibutuhkan, antara lain; proyeksi jumlah penduduk, proyeksi jumlah kebutuhan air yang meliputi kebutuhan air domestik dan kebutuhan air non-domestik, proyeksi produksi air limbah buangan, dan proyeksi potensi air limbah yang dapat dimanfaatkan kembali.

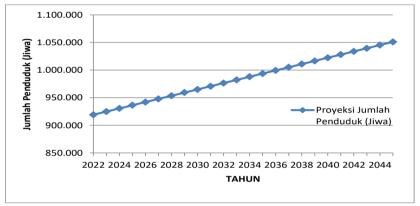
Hasil dan Pembahasan

Sebelum melakukan proyeksi terhadap jumlah penduduk, terlebih dahulu perlu dilakukan pemilihan terhadap metode yang akan digunakan dalam proses tersebut. Dari hasil analisa yang dilakukan dengan mengacu kepada data jumlah penduduk Kota Padang pada tahun 2022, dimana pada tahun tersebut jumlah penduduk ialah sebanyak 919.145 (jiwa) dengan laju pertumbuhan penduduk sebesar +0,62. Sehingga didapatkan bahwa Metode Aritmatika memperoleh nilai standard defiasi/koefisien korelasi yang paling minim dibandingkan dengan metode lainnya, sehingga metode tersebut menjadi metode yang paling tepat untuk digunakan dalam analisa proyeksi jumlah penduduk, lebih lengkapnya dapat dilihat pada table berikut.

Tabel 3. Pemilihan metode proyeksi jumlah penduduk

			PROYEKSI LAJU P	ERTUMBUHAN PI	ENDUDUK (JIWA)	PROYEKSI LAJU F	PERTUMBUHAN P	ENDUDUK (JIWA)	PROYEKSI LAJU F	PERTUMBUHAN F	ENDUDUK (JIWA)
NO	TAHUN	n	N	METODE ARITMAT	IK	METODE GEOMETRIK			METODE EKSPONENSIAL		
			Xi	(Xi-X)	(Xi-X)2	Xi	(Xi-X)	(Xi-X)2	Xi	(Xi-X)	(Xi-X)2
1	2023	1	924.878	-63.058	3.976.291.445	924.878	-66.310	4.396.978.836	924.895	-66.527	4.425.903.398
2	2024	2	930.610	-57.325	3.286.191.277	930.646	-60.541	3.665.265.379	930.682	-60.741	3.689.474.230
3	2025	3	936.343	-51.593	2.661.814.935	936.450	-54.737	2.996.158.409	936.504	-54.918	3.016.032.824
4	2026	4	942.075	-45.860	2.103.162.417	942.291	-48.897	2.390.888.857	942.364	-49.059	2.406.821.685
5	2027	5	947.808	-40.128	1.610.233.726	948.167	-43.020	1.850.705.848	948.259	-43.164	1.863.101.742
6	2028	6	953.540	-34.395	1.183.028.860	954.081	-37.106	1.376.876.944	954.192	-37.231	1.386.152.596
7	2029	7	959.273	-28.663	821.547.819	960.031	-31.156	970.688.394	960.162	-31.261	977.272.770
8	2030	8	965.005	-22.930	525.790.604	966.019	-25.168	633.445.386	966.169	-25.254	637.779.968
9	2031	9	970.738	-17.198	295.757.215	972.044	-19.143	366.472.301	972.213	-19.210	369.011.332
10	2032	10	976.470	-11.465	131.447.651	978.106	-13.081	171.112.969	978.296	-13.127	172.323.704
11	2033	11	982.203	-5.733	32.861.913	984.206	-6.981	48.730.935	984.416	-7.007	49.093.893
12	2034	12	987.935	0	0	990.345	-842	709.718	990.575	-848	718.939
13	2035	13	993.668	5.733	32.861.913	996.521	5.334	28.453.083	996.772	5.349	28.616.393
14	2036	14	999.400	11.465	131.447.651	1.002.737	11.549	133.385.314	1.003.008	11.586	134.224.588
15	2037	15	1.005.133	17.198	295.757.215	1.008.990	17.803	316.951.484	1.009.284	17.861	319.002.919
16	2038	16	1.010.865	22.930	525.790.604	1.015.283	24.096	580.617.736	1.015.598	24.175	584.432.128
17	2039	17	1.016.598	28.663	821.547.819	1.021.615	30.428	925.871.570	1.021.952	30.529	932.014.589
18	2040	18	1.022.331	34.395	1.183.028.860	1.027.987	36.800	1.354.222.119	1.028.345	36.923	1.363.274.600
19	2041	19	1.028.063	40.128	1.610.233.726	1.034.398	43.211	1.867.200.448	1.034.779	43.356	1.879.758.675
20	2042	20	1.033.796	45.860	2.103.162.417	1.040.850	49.662	2.466.359.844	1.041.253	49.830	2.483.035.847
21	2043	21	1.039.528	51.593	2.661.814.935	1.047.341	56.154	3.153.276.110	1.047.767	56.344	3.174.697.965
22	2044	22	1.045.261	57.325	3.286.191.277	1.053.873	62.686	3.929.547.872	1.054.323	62.900	3.956.360.002
23	2045	23	1.050.993	63.058	3.976.291.445	1.060.446	69.259	4.796.796.879	1.060.919	69.496	4.829.660.365
	JUMLA	Н	22.722.514	0	33.256.255.725	22.797.307	0	38.420.716.437	22.802.727	0	38.678.765.154
	BANYAK DA	TA (n)	23			23			23		
	RATA-RATA	A (X)	987.935			991.187			991.423		
ST	ANDAR DEV	IASI (S)	38.880			41.790			41.930		

Sumber: Olahan Data, 2023


Dengan menggunakan metode Aritmatika, proyeksi jumlah penduduk untuk periode tahun 2023 s/d 2045 dapat dilakukan dengan menggunakan (Rumus 1). Hasil dari analisa proyeksi jumlah penduduk tersebut dapat dijadikan sebagi dasar dalam penentuan jenis kategori kota sesuai dengan (Tabel 1) untuk digunakan dalam proses analisa berikutnya. Lebih jelasnya, hasil dari analisa proyeksi jumlah penduduk dapat dilihat pada table dan grafik berikut ini.

Tabel 4. Hasil Proyeksi Jumlah Penduduk Dan Kategori Kota

NO	TAHUN	n	JUMLAH PENDUDUK (JIWA)	KETERANGAN
1	2022	0	919.145	Kota Besar
1	2023	1	924.878	Kota Besar
2	2024	2	930.610	Kota Besar
3	2025	3	936.343	Kota Besar
4	2026	4	942.075	Kota Besar
5	2027	5	947.808	Kota Besar
6	2028	6	953.540	Kota Besar
7	2029	7	959.273	Kota Besar
8	2030	8	965.005	Kota Besar
9	2031	9	970.738	Kota Besar
10	2032	10	976.470	Kota Besar
11	2033	11	982.203	Kota Besar

12	2034	12	987.935	Kota Besar
13	2035	13	993.668	Kota Besar
14	2036	14	999.400	Kota Besar
15	2037	15	1.005.133	Metropolitan
16	2038	16	1.010.865	Metropolitan
17	2039	17	1.016.598	Metropolitan
18	2040	18	1.022.331	Metropolitan
19	2041	19	1.028.063	Metropolitan
20	2042	20	1.033.796	Metropolitan
21	2043	21	1.039.528	Metropolitan
22	2044	22	1.045.261	Metropolitan
23	2045	23	1.050.993	Metropolitan

Sumber: Olahan Data, 2023

Gambar 2. Grafik Proyeksi Jumlah Penduduk Metode Aritmatik Sumber: Olahan Data, 2023

Setelah proyeksi jumlah penduduk dan kategori kota di dapatkan, kemudian dapat dilakukan proses analisa selanjutnya, yaitu analisa proyeksi total kebutuhan air dengan menggunakan (Rumus 8). Untuk memperoleh total kebutuhan air, terlebih dahulu perlu melakukan analisa proyeksi kebutuhan air domestik dengan menggunakan (Rumus 6) pada setiap konsumen domestik dan hydran umum. Selain itu juga perlu melakukan analisa proyeksi kebutuhan air non-domestik dengan menggunakan (Rumus 7) pada setiap komponen konsumen non-domestik. Untuk lebih jelasnya, terkait dengan proyeksi jumlah total kebutuhan air, kebutuhan air domestik dan non-domestik dapat dilihat melalui table dan grafik berikut ini.

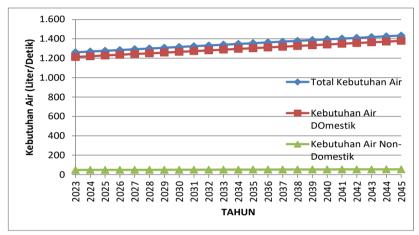
Tabel 5. Proyeksi Kebutuhan Air Domestik

NO	ТН	ТН ЈР	SK	Tingkat Pelayanan (%)		Stanadar Pelayanan		Kd
			Domestik	Hydran	KA	PM		
1	2022	919.145	Kota Besar	70%	30%	150	30	1.213
2	2023	924.878	Kota Besar	70%	30%	150	30	1.220
3	2024	930.610	Kota Besar	70%	30%	150	30	1.228
4	2025	936.343	Kota Besar	70%	30%	150	30	1.235
5	2026	942.075	Kota Besar	70%	30%	150	30	1.243
6	2027	947.808	Kota Besar	70%	30%	150	30	1.251
7	2028	953.540	Kota Besar	70%	30%	150	30	1.258
8	2029	959.273	Kota Besar	70%	30%	150	30	1.266
9	2030	965.005	Kota Besar	70%	30%	150	30	1.273
10	2031	970.738	Kota Besar	70%	30%	150	30	1.281
11	2032	976.470	Kota Besar	70%	30%	150	30	1.288
12	2033	982.203	Kota Besar	70%	30%	150	30	1.296

13	2034	987.935	Kota Besar	70%	30%	150	30	1.304
14	2035	993.668	Kota Besar	70%	30%	150	30	1.311
15	2036	999.400	Kota Besar	70%	30%	150	30	1.319
16	2037	1.005.133	Metropolitan	70%	30%	150	30	1.326
17	2038	1.010.865	Metropolitan	70%	30%	150	30	1.334
18	2039	1.016.598	Metropolitan	70%	30%	150	30	1.341
19	2040	1.022.331	Metropolitan	70%	30%	150	30	1.349
20	2041	1.028.063	Metropolitan	70%	30%	150	30	1.356
21	2042	1.033.796	Metropolitan	70%	30%	150	30	1.364
22	2043	1.039.528	Metropolitan	70%	30%	150	30	1.372
23	2044	1.045.261	Metropolitan	70%	30%	150	30	1.379
24	2045	1.050.993	Metropolitan	70%	30%	150	30	1.387

Sumber: Olahan Data,2023

Tabel 6. Proyeksi Kebutuhan Air Non-Domestik


T 1	ID	Komponen non-domestik					
Tahun	JP	F.Pendidikan	F.Kesehatan	F.Peribadatan	F.Kantor	F.Pasar	Kdn
2023	919.145	1,11	38,63	7,02	1,11	0,00	47,89
2024	924.878	1,12	38,87	7,07	1,12	0,00	48,18
2025	930.610	1,13	39,12	7,11	1,13	0,00	48,48
2026	936.343	1,14	39,36	7,15	1,14	0,00	48,78
2027	942.075	1,14	39,60	7,20	1,14	0,00	49,08
2028	947.808	1,15	39,84	7,24	1,15	0,00	49,38
2029	953.540	1,16	40,08	7,28	1,16	0,00	49,67
2030	959.273	1,16	40,32	7,33	1,16	0,00	49,97
2031	965.005	1,17	40,56	7,37	1,17	0,00	50,27
2032	970.738	1,18	40,80	7,41	1,18	0,00	50,57
2033	976.470	1,18	41,04	7,46	1,18	0,00	50,87
2034	982.203	1,19	41,28	7,50	1,19	0,00	51,16
2035	987.935	1,20	41,52	7,55	1,20	0,00	51,46
2036	993.668	1,20	41,76	7,59	1,20	0,00	51,76
2037	999.400	1,21	42,00	7,63	1,21	0,00	52,06
2038	1.005.133	1,22	42,24	7,68	1,22	0,00	52,36
2039	1.010.865	1,23	42,49	7,72	1,23	0,00	52,65
2040	1.016.598	1,23	42,73	7,76	1,23	0,00	52,95
2041	1.022.331	1,24	42,97	7,81	1,24	0,00	53,25
2042	1.028.063	1,25	43,21	7,85	1,25	0,00	53,55
2043	1.033.796	1,25	43,45	7,89	1,25	0,00	53,85
2044	1.039.528	1,26	43,69	7,94	1,26	0,00	54,15
2045	1.045.261	1,27	43,93	7,98	1,27	0,00	54,44

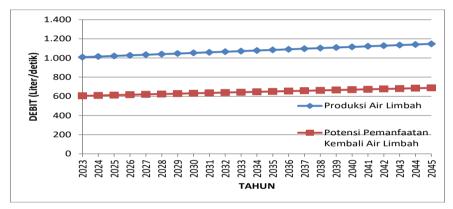
Sumber: Olahan Data, 2023

Tabel 7. Proyeksi Total Kebutuhan Air

Tahun	JP	Domestik	Non-Domestik	Total Kebutuhan Air
2023	919.145	1.213	48	1.261
2024	924.878	1.220	48	1.269
2025	930.610	1.228	48	1.276
2026	936.343	1.235	49	1.284
2027	942.075	1.243	49	1.292
2028	947.808	1.251	49	1.300
2029	953.540	1.258	50	1.308
2030	959.273	1.266	50	1.316
2031	965.005	1.273	50	1.324
2032	970.738	1.281	51	1.331

2033	976.470	1.288	51	1.339
2034	982.203	1.296	51	1.347
2035	987.935	1.304	51	1.355
2036	993.668	1.311	52	1.363
2037	999.400	1.319	52	1.371
2038	1.005.133	1.326	52	1.379
2039	1.010.865	1.334	53	1.386
2040	1.016.598	1.341	53	1.394
2041	1.022.331	1.349	53	1.402
2042	1.028.063	1.356	54	1.410
2043	1.033.796	1.364	54	1.418
2044	1.039.528	1.372	54	1.426
2045	1.045.261	1.379	54	1.434

Gambar 3. Grafik Tingkat Kebutuhan Air Domestik, Non-Domestik, dan Total Kebutuhan Air Sumber: Olahan Data, 2023


Setelah proyeksi jumlah kebutuhan air dilakukan, hasil dari proyeksi tersebut kemudian dapat digunakan sebagai acuan dalam melakukan analisa selanjutnya, yaitu analisa untuk mengetahui seberapa besar potensi air limbah buangan dapat digunakan kembali menjadi sumber alternatif tambahan dalam memenuhi kebutuhan air baku di Kota Padang. Untuk melakukan analisa tersebut, terlebih dahulu perlu mengetahui seberapa besar tingkat produksi air limbah yang dihasilkan, hal tersebut dapat dilakukan dengan menggunakan (Rumus 9) dimana 80% dari total kebutuhan air akan menjadi air limbah. Kemudian dengan memanfaatkan nilai tingkat produksi air limbah yang telah diperoleh dari proses analisa sebelumnya, maka potensi penggunaan kembali air limbah sebagai alternatif tambahan sumber air baku dapat diketahui, proses analisa ini dapat dilakukan dengan menggunakan (Rumus 10) dimana 60% dari produksi air limbah berpotensi untuk dimanfaatkan kembali. Lebih jelasnya terkait dengan analisa potensi penggunaan kembali air limbah dapat dilihat melalui tabel dan grafik berikut ini.

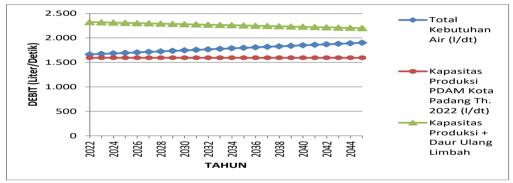
Tabel 8. Produksi Dan Poteni Penggunaan Kembali Air Limbah

Tahun	JP	Total Kebutuhan Air	Identifikasi Produksi	Potensi Pemanfaatan
1 anun			Air Limbah	Air Limbah
2023	919.145	1.261	1.009	605
2024	924.878	1.269	1.015	609
2025	930.610	1.276	1.021	613
2026	936.343	1.284	1.027	616
2027	942.075	1.292	1.034	620
2028	947.808	1.300	1.040	624
2029	953.540	1.308	1.046	628

2030	959.273	1.316	1.053	632
2031	965.005	1.324	1.059	635
2032	970.738	1.331	1.065	639
2033	976.470	1.339	1.071	643
2034	982.203	1.347	1.078	647
2035	987.935	1.355	1.084	650
2036	993.668	1.363	1.090	654
2037	999.400	1.371	1.097	658
2038	1.005.133	1.379	1.103	662
2039	1.010.865	1.386	1.109	665
2040	1.016.598	1.394	1.115	669
2041	1.022.331	1.402	1.122	673
2042	1.028.063	1.410	1.128	677
2043	1.033.796	1.418	1.134	681
2044	1.039.528	1.426	1.141	684
2045	1.045.261	1.434	1.147	688

Sumber: Olahan Data, 2023

Gambar 4. Grafik Produksi Dan Poteni Penggunaan Kembali Air Limbah Sumber: Olahan Data, 2023


Dari analisa yang telah dilakukan, maka diperoleh informasi-informasi utama yang dapat digunakan untuk mengetahu seberapa besar potensi air limbah buangan dapat dimanfaatkan kembali menjadi alternatif sumber air baku tambahan. Mengacu kepada tingkat produksi air PDAM Kota Padang tahun 2022 dengan asumsi bahwa nilai tersebut akan selalu konstan, lalu mengkolaborasikannya dengan hasil analisa proyeksi jumlah kebutuhan air, maka dapat diperoleh status kondisi dan kemampuan dari ketersediaan air baku tersebut untuk memenuhi kebutuhan air di Kota Padang. Disamping itu, hasil dari analisa tingkat produksi dan potensi penggunaan kembali air limbah dapat dijadikan acuan untuk melihat seberapa besar penggunaan kembali air limbah tersebut berkontribusi dalam memenuhi kekurangan air baku Kota Padang ditahun-tahun yang akan datang. Lebih jelasnya dapat dilihat melalui tabel dan grafik berikut ini.

Tabel 9. Status Kondisi Water Balance Eksisting Air Baku Kota Padang

Tahun	Total Kebutuhan Air Kota Padang (l/dt)	Kapasitas Produksi PDAM Tahun 2022	Defisit Distribusi Air	Kondisi Water Balance Eksisting	Produksi Air Limbah	Potensi Daur Ulang Air Limbah	Surplus Ditambah Potensi Daur Ulang Limbah	Kontribusi Terhadap Kebutuhan Air Kota Padang
2022	1.664	1.595	-69	Kurang Mencukupi	1.331	799	730	48,000
2023	1.674	1.595	-79	Kurang Mencukupi	1.339	804	724	48,000
2024	1.685	1.595	-90	Kurang Mencukupi	1.348	809	719	48,000
2025	1.695	1.595	-100	Kurang Mencukupi	1.356	814	714	48,000

2026	1.705	1.595	-110	Kurang Mencukupi	1.364	818	708	48,000
2027	1.716	1.595	-121	Kurang Mencukupi	1.372	823	703	48,000
2028	1.726	1.595	-131	Kurang Mencukupi	1.381	828	698	48,000
2029	1.736	1.595	-141	Kurang Mencukupi	1.389	833	692	48,000
2030	1.746	1.595	-151	Kurang Mencukupi	1.397	838	687	48,000
2031	1.757	1.595	-162	Kurang Mencukupi	1.405	843	681	48,000
2032	1.767	1.595	-172	Kurang Mencukupi	1.414	848	676	48,000
2033	1.777	1.595	-182	Kurang Mencukupi	1.422	853	671	48,000
2034	1.788	1.595	-193	Kurang Mencukupi	1.430	858	665	48,000
2035	1.798	1.595	-203	Kurang Mencukupi	1.438	863	660	48,000
2036	1.808	1.595	-213	Kurang Mencukupi	1.447	868	655	48,000
2037	1.819	1.595	-224	Kurang Mencukupi	1.455	873	649	48,000
2038	1.829	1.595	-234	Kurang Mencukupi	1.463	878	644	48,000
2039	1.839	1.595	-244	Kurang Mencukupi	1.471	883	639	48,000
2040	1.850	1.595	-255	Kurang Mencukupi	1.480	888	633	48,000
2041	1.860	1.595	-265	Kurang Mencukupi	1.488	893	628	48,000
2042	1.870	1.595	-275	Kurang Mencukupi	1.496	898	622	48,000
2043	1.881	1.595	-286	Kurang Mencukupi	1.505	903	617	48,000
2044	1.891	1.595	-296	Kurang Mencukupi	1.513	908	612	48,000
2045	1.901	1.595	-306	Kurang Mencukupi	1.521	913	606	48,000

Sumber: Olahan Data, 2023

Gambar 5. Grafik Status Kondisi *Water Balance Eksisting* Air Baku Kota Padang Sumber: Olahan Data, 2023

Kesimpulan

Kota padang pada tahun acuan penelitian, yaitu pada tahun 2022 telah mengalami kondisi *Water Balance Eksisting* yang menunjukkan status kurang mencukupi/defisit air. Dimana jumlah produksi air PDAM Kota Padang pada tahun tersebut ialah sebesar 1.595 liter/detik, sementara total kebutuhan air Kota Padang pada tahun tersebut ialah sebesar 1.664 liter/detik. Hal ini mengidentifikasikan bahwa tingkat produksi air lebih kecil dibandingkan dengan tingkat kebutuhan akan air itu sendiri, dimana pada tahun tersebut Kota Padang telah mengalami kekurangan/defisit air sebesar 69 liter/detik.

Sementara hasil dari analisa proyeksi kebutuhan air Kota Padang pada periode tahun 2022 s/d 2045 menunjukkan bahwa total kebutuhan air Kota Padang akan terus mengalami peningkatan disetiap tahunnya, yaitu sebesar +8 liter/detik/tahun. Dengan asumsi bahwa tingkat produksi PDAM Kota Padang akan terus konstan dengan nilai produksi air pada tahun 2022, maka pada tahun berikutnya kota padang seterusnya akan mengalami peningkatan defisit/kekurangan air sebesar -10,32 liter/detik/tahun.

Dari hasil analisa produksi dan potensi penggunaan kembali air limbah, dapat disimpulkan bahwa penggunaan kembali air limbah merupakan sebuah solusi alternatif yang potensial dalam upaya menyelesaikan permasalahan kekurangan air di Kota Padang. Analisa tersebut menunjukkan bahwa dari

tingkat kebutuhan air Kota Padang Pada periode tahun 2022 akan memproduksi air limbah sebanyak 799 liter/detik dan akan terus bertambah setiap tahunnya dengan peningkatan sebesar 8 liter/detik/tahun. Dari angka tersebut sebanyak 60% limbah berpotensi untuk dapat digunakan kembali.

Jika daur ulang air limbah tersebut digunakan untuk menambah produksi air baku PDAM, maka akan menghasilkan air baku sebanyak 2.325 liter/detik yang juga akan terus mengalami peningkatan sebesar 8 liter/detik/tahun. Artinya penggunaan kembali air limbah tersebut pada tahun 2022 saja dapat berkontribusi terhadap perbaikan kondisi *Water Balance Eksisting* Kota Padang dari defisit sebesar -69 liter/detik menjadi surplus sebesar +799 liter/detik dengan besar kontribusi terhadap pemenuhan kebutuhan air sebesar 48%. Namun, jika bertahan pada asumsi bahwa tingkat produksi PDAM akan selalu konstan setiap tahunya, tentu angka surplus tersebut akan mengalami penurunan, sebab tingkat kebutuhan air akan terus bertambah setiap tahunnya, seiring dengan pertambahan jumlah penduduk dan aktifitasnya.

Kedepan, perlu adanya kajian lebih lanjut terkait dengan upaya penggunaan kembali air limbah ini. Sebab penggunaan kembali air limbah sebagai sumber alternatif tambahan air baku sangat potensial untuk di gunakan sebagai solusi guna menyelesaikan permasalahan kekuragan air di Kota Padang pada tahun-tahun yang akan datang, terutama ketika memasuki musim kemarau dimana debit air sungai yang menjadi sumber utama produksi PDAM Kota Padang mengalami penurunan yang signifikan. Untuk mewujudkan hal ini, perlu adanya sinergitas antara setiap pihak yang berkepentingan dan pemerintah sebagai penanggungjawab serta motor penggerak dalam mewujudkan teknologi penggunaan kembali air limbah ini.

Daftar Rujukan

- [1] L. P. Astani, I. Supraba, and R. Jayadi, "Analisis Kebutuhan Air Bersih Domestik dan Non Domestik DI KABUPATEN KULON PROGO, DAERAH ISTIMEWA YOGYAKARTA," *J. Teknol. Sipil*, vol. 5, no. 2, pp. 34–41, 2021.
- [2] F. A. Astuti, A. Sungkowo, and W. A. D. Kristanto, "Analisis Kebutuhan Air Domestik dan Non Domestik di Kabupaten Gunungkidul," *J. Sains & Teknologi Lingkung.*, vol. 10, no. 2, pp. 139–146, 2018, doi: 10.20885/jstl.vol10.iss2.art6. https://doi.org/10.20885/jstl.vol10.iss2.art6
- [3] A. Wahyuni and Junianto, "Analisa Kebutuhan Air Bersih Kota Batam Pada Tahun 2025," *Tapak*, vol. 6, no. 2, pp. 116–126, 2017.
- [4] M. Togap Sinambela, Simon Sembiring, "POTENSI PEMANFAATAN DAUR ULANG AIR LIMBAH DOMESTIK DAN INDUSTRI UNTUK SUMBER AIR BAKU DI KOTA BATAM Togap Sinambela 1, Simon Sembiring G. 2, Mardiaman 3 1," vol. 4, no. 1, pp. 54–66, 2023.
- [5] R. Nugroho, "Pemasyarakatan Daur Ulang Air Limbah Untuk Mengantisipasi Kelangkaan Air Akibat Perubahan Iklim Global," *J. Air Indones.*, vol. 7, no. 1, 2018, doi: 10.29122/jai.v7i1.2392. https://doi.org/10.29122/jai.v7i1.2392
- [6] T. Hernaningsih, "Daur Ulang Air Limbah Sebagai Kontribusi Sumber Air; Review," *J. Rekayasa Lingkung.*, vol. 14, no. 2, pp. 193–207, 2021, [Online]. Available: https://ejurnal.bppt.go.id/index.php/JRL/article/view/5221
- [7] C. M. M. Serasi, Ed., Review Rencana Induk Pengembangan Sistem Penyediaan Air Minum Kota Padang 2010-2030, Revie 2016., vol. 44, no. 1. Kota Padang: Badan Perencanaan Daerah Kota Padang, 2021. doi: 10.47655/dialog.v44i1.470. https://doi.org/10.47655/dialog.v44i1.470
- [8] S. Z, "Analisa Ketersediaan Air Bersih untuk Kebutuhan Penduduk di Kecamatan Pauh Kota Padang," vol. 3, pp. 55–62, 2017, doi: 10.21063/spi3.1017.55-62. https://doi.org/10.21063/SPI3.1017.55-62
- [9] BPS sumbar, "Sumatera Barat Dalam Angka 2023," Ber. Resmi Badan Pus. Stat., 2023.
- [10] B. P. S. K. Padang, Kota Padang Dalam Angka 2023. Kota Padang: BPS Kota Padang, 2023.
- [11] A. Munandar, V. Avri, and S. Hasiany, "Daur Ulang Air Buangan Menjadi Air Baku Dengan

- Sistem Filtrasi Di PT P (Industri Kertas)," *Media Ilm. Tek. Lingkung.*, vol. 5, no. 2, pp. 71–75, 2020, doi: 10.33084/mitl.v5i2.1395. https://doi.org/10.21063/SPI3.1017.55-62
- [12] P. R. Indonesia, *Undang-Undang Republik Indonesia*. 2020. doi: 10.1007/978-3-030-16565-9_2. https://doi.org/10.21063/SPI3.1017.55-62
- [13] W. K. Padang, Peraturan Daerah No. 3 Tahun 2006 Tentang Pengelolaan Kualitas Air Dan Pengendalian Pencemaran Air. Kota Padang: Pemerintah Kota Padang, 2006.
- [14] Sutikno, "Proyeksi Ketersediaan Air Tahun 2036 Terhadap Sumber Air Junrejo Pada Hipam," *J. Reka Buana*, vol. 2, no. 1, pp. 19–29, 2017.
- [15] Pekerjaan Umum (Public Works), "Penyelenggaraan pengembangan sistem penyediaan air minum," 2007, [Online]. Available: ciptakarya.pu.go.id/dok/hukum/permen/permen_18_2007.pdf
- [16] PUPR, "Modul Proyeksi Kebutuhan Air dan Identifikasi Pola Fluktuasi Pemakaian Air," *Perenc. Jar. Pipa Transm. dan Distrib. Air Minum*, pp. 01–16, 1996.