Tinjauan Pustaka Sistematis: Penerapan Metode Naives Bayes untuk Klasifikasi dalam Dataset Cuaca
DOI:
https://doi.org/10.37366/jpcs.v2i2.2101Keywords:
naive bayes, klasifikasi, dataset, cuacaAbstract
This study aims to determine the application of the naive bays method for classification in Weather datasets using the systematic literature review method. Weather forecasting research is an interesting object to study because weather is one of the things that influences everyday life so good accuracy in weather forecasts is very much needed. This study uses the systematic literature review method, which is a process of identifying, assessing, and interpreting facts and evidence from available research with the aim of finding answers to a particular research question. Climate change and weather are problems faced by almost the whole world which classify and predict. The problem is that there are many influencing variables, so it is quite difficult and unpredictable. Climate and weather change is human-caused global warming which makes it more difficult to solve weather problems. The results of this study can be used to measure the level of accuracy and MSE of the weather. the dataset serves as a metric for determining precipitation groups and it is concluded that the system can make predictions with an accuracy probability of up to 92% on new data. for the precision class to get a result of 100% where the system can predict the suitability of the class that is relevant to the results of the selected class.
Downloads
References
Ali, A., Khairan, A., Tempola, F., & Fuad, A. (2021). Application Of Naïve Bayes to Predict the Potential of Rain in Ternate City. E3S Web of Conferences, 328, 04011. https://doi.org/10.1051/e3sconf/202132804011.
Ali, Z. M., Hassoon, N. H., Ahmed, W. S., & Abed, H. N. (2020). The Application of Data Mining for Predicting Academic Performance Using K-means Clustering and Naïve Bayes Classification. International Journal of Psychosocial Rehabilitation, 24(03), 2143–2151. https://doi.org/10.37200/IJPR/V24I3/PR200962
Azmi, A. U., Hadi, A. F., Anggraeni, D., & Riski, A. (2021). Naive bayes methods for rainfall prediction classification in Banyuwangi. Journal of Physics: Conference Series, 1872(1), 012028. https://doi.org/10.1088/1742-6596/1872/1/012028
Bhosale, K. S., Nenova, M., & Iliev, G. (2018). Modified Naive Bayes Intrusion Detection System (MNBIDS). 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS), 291–296. https://doi.org/10.1109/CTEMS.2018.8769248
Findawati, Y., Astutik, I. R. I., Fitroni, A. S., Indrawati, I., & Yuniasih, N. (2019). Comparative analysis of Naïve Bayes, K Nearest Neighbor and C.45 method in weather forecast. Journal of Physics: Conference Series, 1402(6), 066046. https://doi.org/10.1088/1742-6596/1402/6/066046
Fitrianah, D., Gunawan, W., & Sari, A. P. (2022). Studi Komparasi Algoritma Klasifikasi C5.0, SVM dan Naive Bayes dengan Studi Kasus Prediksi Banjir. Techno.Com, 21(1), 1–11. https://doi.org/10.33633/tc.v21i1.5348
Gunadi, I. G. A., & Dewi, A. A. K. (2018). Klasifikasi Curah Hujan di Provinsi Bali Berdasarkan Metode Naïve Bayesian. Jurnal Matematika, 12(1).
Ismana, D. R., Baehera, S., Fitrianto, A., Sartono, B., & Oktarina, S. D. (2022). Penggerombolan Desa di Jawa Barat Berdasarkan Daerah Rawan Bencana. Jurnal Statistika dan Aplikasinya, 6(2), 243–252. https://doi.org/10.21009/JSA.06210
Laia, M. L., & Setyawan, Y. (t.t.). PERBANDINGAN HASIL KLASIFIKASI CURAH HUJAN MENGGUNAKAN METODE SVM DAN NBC.
Nursyahfitri, R., Rozikin, C., & Adam, R. I. (2022). Penerapan Metode SMOTE dalam Klasifikasi Daerah Rawan Banjir di Karawang Menggunakan Algoritma Naive Bayes. 10(4).
Pratiwi, T. A., Irsyad, M., & Kurniawan, R. (2021). Klasifikasi Kebakaran Hutan dan Lahan Menggunakan Algoritma Naïve Bayes (Studi Kasus: Provinsi Riau). Jurnal Sistem dan Teknologi Informasi (Justin), 9(2), 101. https://doi.org/10.26418/justin.v9i2.42823
Pratiwi, T. A., Irsyad, M., Kurniawan, R., Agustian, S., & Negara, B. S. (2021). Klasifikasi Kebakaran Hutan Dan Lahan Menggunakan Algoritma Naïve Bayes Di Kabupaten Pelalawan. CESS (Journal of Computer Engineering, System and Science), 6(1), 139. https://doi.org/10.24114/cess.v6i1.22555
Rahayu, S., & Rms, A. S. (2018). Penerapan Metode Naive Bayes Dalam Pemilihan Kualitas Jenis Rumput Taman CV. Rumput Kita Landscape. Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, 9(2), 162–171. https://doi.org/10.31849/digitalzone.v9i2.1942
Rizqi, A. A., & Kusumaningsih, D. (2022). Klasifikasi Curah Hujan di Kota Bogor Provinsi Jawa Barat dengan Menggunakan Metode Naïve Bayes.
Saleh, A. (2015). Implementasi Metode Klasifikasi Naïve Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga. 2(3).
Sena, I. G. W., Dillak, J. W., Leunupun, P., & Santoso, A. J. (2020). Predicting Rainfall Intensity using Naïve Bayes and Information Gain Methods (Case Study: Sleman Regency). Journal of Physics: Conference Series, 1577(1), 012011. https://doi.org/10.1088/1742-6596/1577/1/012011
Sidik, D. D., & Sen, T. W. (2019). Penggunaan Stacking Classifier Untuk Prediksi Curah Hujan. IT for Society, 4(1). https://doi.org/10.33021/itfs.v4i1.1180
Siregar, A. M. (2020). Klasifikasi Untuk Prediksi Cuaca Menggunakan Esemble Learning. PETIR, 13(2), 138–147. https://doi.org/10.33322/petir.v13i2.998
Yani, V. I., Aradea, A., & Mubarok, H. (2022). Optimasi Prakiraan Cuaca Menggunakan Metode Ensemble pada Naïve Bayes dan C4.5. Jurnal Teknik Informatika dan Sistem Informasi, 8(3). https://doi.org/10.28932/jutisi.v8i3.5455
Yasar, A., & Saritas, M. M. (2019). Performance Analysis of ANN and Naive Bayes Classification Algorithm for Data Classification. International Journal of Intelligent Systems and Applications in Engineering, 7(2), 88–91. https://doi.org/10.18201/ijisae.2019252786
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Practical Computer Science
This work is licensed under a Creative Commons Attribution 4.0 International License.